[转]MySQL索引

PunkLu 2020年02月10日 147次浏览
数据库索引
本文转载自微信公众号架构师之路,是我看过的最好的讲技术的公众号,推荐。

原文链接:数据库索引,到底是什么做的?

索引的数据结构

问题1. 数据库为什么要设计索引?

图书馆存了1000W本图书,要从中找到一本书,一本本查,要查到什么时候去?

于是,图书管理员设计了一套规则:

(1)一楼放历史类,二楼放文学类,三楼放IT类…

(2)IT类,又分软件类,硬件类…

(3)软件类,又按照书名音序排序…

以便快速找到一本书。

与之类比,数据库存储了1000W条数据,要从中找到一条具体的记录,一条条查,要查到什么时候去?

于是,要有索引,用于提升数据库的查找速度。

问题2. 哈希(hash)比树(tree)更快,索引结构为什么要设计成树型?

加速查找速度的数据结构,常见的有两类:

(1)哈希,例如HashMap,查询/插入/修改/删除的平均时间复杂度都是O(1);

(2),例如平衡二叉搜索树,查询/插入/修改/删除的平均时间复杂度都是O(lg(n));

可以看到,不管是读请求,还是写请求,哈希类型的索引,都要比树型的索引更快一些,那为什么,索引结构要设计成树型呢?

索引设计成树形,和SQL的需求相关。

对于这样一个单行查询的SQL需求:

select * from t where name=”zhangsan1”;

确实是哈希索引更快,因为每次都只查询一条记录。

所以,如果业务需求都是单行访问,例如passport,确实可以使用哈希索引。

但是对于排序查询的SQL需求:

  • 分组:group by
  • 排序:order by
  • 比较:<、>

哈希型的索引,时间复杂度会退化为O(n),而树型的“有序”特性,依然能够保持O(log(n)) 的高效率。

InnoDB并不支持哈希索引。

问题3. 数据库索引为什么使用B+树?

第一种:二叉搜索树

二叉搜索树,如下图,是最为大家所熟知的一种数据结构,就不展开介绍了,它为什么不适合用作数据库索引?

21

(1)当数据量大的时候,树的高度会比较高,数据量大的时候,查询会比较慢;

(2)每个节点只存储一个记录,可能导致一次查询有很多次磁盘IO;

第二种:B树

22

B树,如上图,它的特点是:

(1)不再是二叉搜索,而是m叉搜索;

(2)叶子节点,非叶子节点,都存储数据;

(3)中序遍历,可以获得所有节点;

B树被作为实现索引的数据结构被创造出来,是因为它能够完美的利用“局部性原理”。

什么是局部性原理?

局部性原理的逻辑是这样的:

(1)内存读写块,磁盘读写慢,而且慢很多;

(2)磁盘预读:磁盘读写并不是按需读取,而是按页预读,一次会读一页的数据,每次加载更多的数据,如果未来要读取的数据就在这一页中,可以避免未来的磁盘IO,提高效率;通常,一页数据是4K。

(3)局部性原理:软件设计要尽量遵循“数据读取集中”与“使用到一个数据,大概率会使用其附近的数据”,这样磁盘预读能充分提高磁盘IO;

B树为何适合做索引?

(1)由于是m分叉的,高度能够大大降低;

(2)每个节点可以存储j个记录,如果将节点大小设置为页大小,例如4K,能够充分的利用预读的特性,极大减少磁盘IO;

第三种:B+树
23

B+树中根到每一个节点的路径长度一样,而B树不是这样。

B+树,如上图,仍是m叉搜索树,在B树的基础上,做了一些改进

(1)非叶子节点不再存储数据,数据只存储在同一层的叶子节点上;

(2)叶子之间,增加了链表,获取所有节点,不再需要中序遍历;

这些改进让B+树比B树有更优的特性:

(1)范围查找,定位min与max之后,中间叶子节点,就是结果集,不用中序回溯;

(2)叶子节点存储实际记录行,记录行相对比较紧密的存储,适合大数据量磁盘存储;非叶子节点存储记录的PK,用于查询加速,适合内存存储;

(3)非叶子节点,不存储实际记录,而只存储记录的KEY的话,那么在相同内存的情况下,B+树能够存储更多索引;

总结

  • 数据库索引用于加速查询

  • 虽然哈希索引是O(1),树索引是O(log(n)),但SQL有很多“有序”需求,故数据库使用树型索引

  • InnoDB不支持哈希索引

  • 数据预读的思路是:磁盘读写并不是按需读取,而是按页预读,一次会读一页的数据,每次加载更多的数据,以便未来减少磁盘IO

  • 局部性原理:软件设计要尽量遵循“数据读取集中”与“使用到一个数据,大概率会使用其附近的数据”,这样磁盘预读能充分提高磁盘IO

  • 数据库的索引最常用B+树:

    (1)很适合磁盘存储,能够充分利用局部性原理,磁盘预读;

    (2)很低的树高度,能够存储大量数据;

    (3)索引本身占用的内存很小;

    (4)能够很好的支持单点查询,范围查询,有序性查询;

MyISAM与InnoDB的索引差异

数据库的索引分为主键索引(Primary Inkex)与普通索引(Secondary Index)。InnoDB和MyISAM是怎么利用B+树来实现这两类索引,其又有什么差异呢?

一,MyISAM的索引

MyISAM的索引与行记录是分开存储的,叫做非聚集索引(UnClustered Index)。

其主键索引与普通索引没有本质差异:

  • 有连续聚集的区域单独存储行记录
  • 主键索引的叶子节点,存储主键,与对应行记录的指针
  • 普通索引的叶子结点,存储索引列,与对应行记录的指针

主键索引与普通索引是两棵独立的索引B+树,通过索引列查找时,先定位到B+树的叶子节点,再通过指针定位到行记录。

举个例子,MyISAM:

t(id PK, name KEY, sex, flag);

表中有四条记录:

1, shenjian, m, A

3, zhangsan, m, A

5, lisi, m, A

9, wangwu, f, B

24

其B+树索引构造如上图:

  • 行记录单独存储
  • id为PK,有一棵id的索引树,叶子指向行记录
  • name为KEY,有一棵name的索引树,叶子也指向行记录

二、InnoDB的索引

InnoDB的主键索引与行记录是存储在一起的,故叫做聚集索引(Clustered Index):

  • 没有单独区域存储行记录
  • 主键索引的叶子节点,存储主键,与对应行记录(而不是指针)

因为这个特性,InnoDB的表必须要有聚集索引:

(1)如果表定义了PK,则PK就是聚集索引;

(2)如果表没有定义PK,则第一个非空unique列是聚集索引;

(3)否则,InnoDB会创建一个隐藏的row-id作为聚集索引;

聚集索引,也只能够有一个,因为数据行在物理磁盘上只能有一份聚集存储。

InnoDB的普通索引可以有多个,它与聚集索引是不同的:

  • 普通索引的叶子节点,存储主键(也不是指针)

对于InnoDB表,这里的启示是:

(1)不建议使用较长的列做主键,例如char(64),因为所有的普通索引都会存储主键,会导致普通索引过于庞大;

(2)建议使用趋势递增的key做主键,由于数据行与索引一体,这样不至于插入记录时,有大量索引分裂,行记录移动;

仍是上面的例子,只是存储引擎换成InnoDB:

t(id PK, name KEY, sex, flag);

表中还是四条记录:

1, shenjian, m, A

3, zhangsan, m, A

5, lisi, m, A

9, wangwu, f, B

25

其B+树索引构造如上图:

  • id为PK,行记录和id索引树存储在一起
  • name为KEY,有一棵name的索引树,叶子存储id

当:

select * from t where name=‘lisi’;

26

会先通过name辅助索引定位到B+树的叶子节点得到id=5,再通过聚集索引定位到行记录。所以,其实扫了2遍索引树。

三,总结

MyISAM和InnoDB都使用B+树来实现索引:

  • MyISAM的索引与数据分开存储
  • MyISAM的索引叶子存储指针,主键索引与普通索引无太大区别
  • InnoDB的聚集索引和数据行统一存储
  • InnoDB的聚集索引存储数据行本身,普通索引存储主键
  • InnoDB一定有且只有一个聚集索引
  • InnoDB建议使用趋势递增整数作为PK,而不宜使用较长的列作为PK